Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene.

نویسندگان

  • A Eichler
  • J Moser
  • J Chaste
  • M Zdrojek
  • I Wilson-Rae
  • A Bachtold
چکیده

The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes

The theory of damping finds its roots in Newton’s Principia [1] and has been exhaustively tested in objects as disparate as the Foucault pendulum, mirrors used in gravitational-wave detectors, and submicron mechanical resonators. Owing to recent advances in nanotechnology it is now possible to explore damping in systems with transverse dimensions on the atomic scale. Here, we study the damping ...

متن کامل

News: Putting a damper on nanoresonators.

The harmonic oscillator holds a special place in the history of science and technology, having an important role in the development of both classical and quantum physics. Examples include Galileo’s pendulum, resonant electrical circuits and molecular vibrations. In micro and nanomechanical systems, the prototypical harmonic oscillator is a mechanical resonator — a beam of material that oscillat...

متن کامل

Controlled assembly of graphene sheets and nanotubes: Fabrication of suspended multi-element all-carbon vibrational structures

We report on the fabrication and operation of a multi-element vibrational structure consisting of two graphene mechanical resonators coupled by a nanotube beam. The whole structure is suspended. Each graphene resonator is clamped by two metal electrodes. The structure is fabricated using a combination of electron-beam lithography and atomic-force microscopy nano-manipulation. This layout allows...

متن کامل

The Molecular Mechanics Model of Carbon Allotropes

Carbon can form numerous allotropes because of its valency. Graphene, carbon nanotubes,capped carbon nanotubes, buckyballs, and nanocones are well-known polymorphs of carbon.Remarkable mechanical properties of these carbon atoms have made them the subject of intenseresearch. Several studies have been conducted on carbon nanotubes or graphene. In the presentstudy, the molecular mechanics method ...

متن کامل

A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors.

Owing to its unique electrical, thermal, and mechanical properties, graphene has attracted great attention in various application areas, such as energy-storage materials, [ 1–3 ] free-standing paper-like materials, [ 4–6 ] polymer composites, [ 7–9 ] liquid crystal devices, [ 10 ] and mechanical resonators. [ 11 , 12 ] Approaches for preparing graphene include micromechanical cleavage, [ 11 , 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2011